O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
↳ QTRS
↳ DependencyPairsProof
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
-1(I(x), I(y)) → O1(-(x, y))
SIZE(N(x, l, r)) → +1(Size(l), Size(r))
+1(O(x), I(y)) → +1(x, y)
+1(I(x), O(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
BS1(N(x, l, r)) → AND(ge(x, Max(l)), ge(Min(r), x))
BS1(N(x, l, r)) → MAX(l)
WB1(N(x, l, r)) → GE(Size(l), Size(r))
GE(0, O(x)) → GE(0, x)
SIZE(N(x, l, r)) → SIZE(l)
+1(I(x), I(y)) → +1(+(x, y), I(0))
WB1(N(x, l, r)) → AND(WB(l), WB(r))
GE(I(x), I(y)) → GE(x, y)
LOG'(O(x)) → +1(Log'(x), I(0))
GE(I(x), O(y)) → GE(x, y)
GE(O(x), I(y)) → GE(y, x)
+1(x, +(y, z)) → +1(x, y)
WB1(N(x, l, r)) → SIZE(l)
WB1(N(x, l, r)) → WB1(r)
-1(I(x), I(y)) → -1(x, y)
LOG'(O(x)) → LOG'(x)
-1(I(x), O(y)) → -1(x, y)
+1(I(x), I(y)) → O1(+(+(x, y), I(0)))
-1(O(x), I(y)) → -1(x, y)
-1(O(x), O(y)) → -1(x, y)
SIZE(N(x, l, r)) → +1(+(Size(l), Size(r)), I(1))
WB1(N(x, l, r)) → AND(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
BS1(N(x, l, r)) → BS1(l)
WB1(N(x, l, r)) → -1(Size(r), Size(l))
WB1(N(x, l, r)) → -1(Size(l), Size(r))
BS1(N(x, l, r)) → GE(Min(r), x)
SIZE(N(x, l, r)) → SIZE(r)
LOG'(I(x)) → +1(Log'(x), I(0))
-1(O(x), I(y)) → -1(-(x, y), I(1))
WB1(N(x, l, r)) → IF(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l))))
GE(O(x), I(y)) → NOT(ge(y, x))
WB1(N(x, l, r)) → GE(I(0), -(Size(r), Size(l)))
WB1(N(x, l, r)) → GE(I(0), -(Size(l), Size(r)))
LOG'(O(x)) → GE(x, I(0))
LOG(x) → -1(Log'(x), I(0))
BS1(N(x, l, r)) → BS1(r)
LOG(x) → LOG'(x)
BS1(N(x, l, r)) → AND(BS(l), BS(r))
BS1(N(x, l, r)) → AND(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
+1(O(x), O(y)) → O1(+(x, y))
BS1(N(x, l, r)) → MIN(r)
GE(O(x), O(y)) → GE(x, y)
+1(I(x), I(y)) → +1(x, y)
WB1(N(x, l, r)) → WB1(l)
WB1(N(x, l, r)) → SIZE(r)
BS1(N(x, l, r)) → GE(x, Max(l))
LOG'(O(x)) → IF(ge(x, I(0)), +(Log'(x), I(0)), 0)
-1(O(x), O(y)) → O1(-(x, y))
MAX(N(x, l, r)) → MAX(r)
LOG'(I(x)) → LOG'(x)
MIN(N(x, l, r)) → MIN(l)
+1(O(x), O(y)) → +1(x, y)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
-1(I(x), I(y)) → O1(-(x, y))
SIZE(N(x, l, r)) → +1(Size(l), Size(r))
+1(O(x), I(y)) → +1(x, y)
+1(I(x), O(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
BS1(N(x, l, r)) → AND(ge(x, Max(l)), ge(Min(r), x))
BS1(N(x, l, r)) → MAX(l)
WB1(N(x, l, r)) → GE(Size(l), Size(r))
GE(0, O(x)) → GE(0, x)
SIZE(N(x, l, r)) → SIZE(l)
+1(I(x), I(y)) → +1(+(x, y), I(0))
WB1(N(x, l, r)) → AND(WB(l), WB(r))
GE(I(x), I(y)) → GE(x, y)
LOG'(O(x)) → +1(Log'(x), I(0))
GE(I(x), O(y)) → GE(x, y)
GE(O(x), I(y)) → GE(y, x)
+1(x, +(y, z)) → +1(x, y)
WB1(N(x, l, r)) → SIZE(l)
WB1(N(x, l, r)) → WB1(r)
-1(I(x), I(y)) → -1(x, y)
LOG'(O(x)) → LOG'(x)
-1(I(x), O(y)) → -1(x, y)
+1(I(x), I(y)) → O1(+(+(x, y), I(0)))
-1(O(x), I(y)) → -1(x, y)
-1(O(x), O(y)) → -1(x, y)
SIZE(N(x, l, r)) → +1(+(Size(l), Size(r)), I(1))
WB1(N(x, l, r)) → AND(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
BS1(N(x, l, r)) → BS1(l)
WB1(N(x, l, r)) → -1(Size(r), Size(l))
WB1(N(x, l, r)) → -1(Size(l), Size(r))
BS1(N(x, l, r)) → GE(Min(r), x)
SIZE(N(x, l, r)) → SIZE(r)
LOG'(I(x)) → +1(Log'(x), I(0))
-1(O(x), I(y)) → -1(-(x, y), I(1))
WB1(N(x, l, r)) → IF(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l))))
GE(O(x), I(y)) → NOT(ge(y, x))
WB1(N(x, l, r)) → GE(I(0), -(Size(r), Size(l)))
WB1(N(x, l, r)) → GE(I(0), -(Size(l), Size(r)))
LOG'(O(x)) → GE(x, I(0))
LOG(x) → -1(Log'(x), I(0))
BS1(N(x, l, r)) → BS1(r)
LOG(x) → LOG'(x)
BS1(N(x, l, r)) → AND(BS(l), BS(r))
BS1(N(x, l, r)) → AND(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
+1(O(x), O(y)) → O1(+(x, y))
BS1(N(x, l, r)) → MIN(r)
GE(O(x), O(y)) → GE(x, y)
+1(I(x), I(y)) → +1(x, y)
WB1(N(x, l, r)) → WB1(l)
WB1(N(x, l, r)) → SIZE(r)
BS1(N(x, l, r)) → GE(x, Max(l))
LOG'(O(x)) → IF(ge(x, I(0)), +(Log'(x), I(0)), 0)
-1(O(x), O(y)) → O1(-(x, y))
MAX(N(x, l, r)) → MAX(r)
LOG'(I(x)) → LOG'(x)
MIN(N(x, l, r)) → MIN(l)
+1(O(x), O(y)) → +1(x, y)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
SIZE(N(x, l, r)) → +1(Size(l), Size(r))
-1(I(x), I(y)) → O1(-(x, y))
+1(I(x), O(y)) → +1(x, y)
+1(O(x), I(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
BS1(N(x, l, r)) → AND(ge(x, Max(l)), ge(Min(r), x))
BS1(N(x, l, r)) → MAX(l)
WB1(N(x, l, r)) → GE(Size(l), Size(r))
GE(0, O(x)) → GE(0, x)
SIZE(N(x, l, r)) → SIZE(l)
+1(I(x), I(y)) → +1(+(x, y), I(0))
LOG'(O(x)) → +1(Log'(x), I(0))
GE(I(x), I(y)) → GE(x, y)
WB1(N(x, l, r)) → AND(WB(l), WB(r))
GE(O(x), I(y)) → GE(y, x)
GE(I(x), O(y)) → GE(x, y)
WB1(N(x, l, r)) → SIZE(l)
+1(x, +(y, z)) → +1(x, y)
WB1(N(x, l, r)) → WB1(r)
LOG'(O(x)) → LOG'(x)
-1(I(x), I(y)) → -1(x, y)
-1(O(x), I(y)) → -1(x, y)
+1(I(x), I(y)) → O1(+(+(x, y), I(0)))
-1(I(x), O(y)) → -1(x, y)
SIZE(N(x, l, r)) → +1(+(Size(l), Size(r)), I(1))
-1(O(x), O(y)) → -1(x, y)
WB1(N(x, l, r)) → AND(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
BS1(N(x, l, r)) → BS1(l)
WB1(N(x, l, r)) → -1(Size(l), Size(r))
WB1(N(x, l, r)) → -1(Size(r), Size(l))
BS1(N(x, l, r)) → GE(Min(r), x)
SIZE(N(x, l, r)) → SIZE(r)
LOG'(I(x)) → +1(Log'(x), I(0))
-1(O(x), I(y)) → -1(-(x, y), I(1))
WB1(N(x, l, r)) → IF(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l))))
GE(O(x), I(y)) → NOT(ge(y, x))
WB1(N(x, l, r)) → GE(I(0), -(Size(l), Size(r)))
WB1(N(x, l, r)) → GE(I(0), -(Size(r), Size(l)))
LOG(x) → -1(Log'(x), I(0))
LOG'(O(x)) → GE(x, I(0))
BS1(N(x, l, r)) → BS1(r)
LOG(x) → LOG'(x)
BS1(N(x, l, r)) → AND(BS(l), BS(r))
BS1(N(x, l, r)) → AND(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
+1(O(x), O(y)) → O1(+(x, y))
BS1(N(x, l, r)) → MIN(r)
GE(O(x), O(y)) → GE(x, y)
+1(I(x), I(y)) → +1(x, y)
BS1(N(x, l, r)) → GE(x, Max(l))
WB1(N(x, l, r)) → SIZE(r)
WB1(N(x, l, r)) → WB1(l)
-1(O(x), O(y)) → O1(-(x, y))
LOG'(O(x)) → IF(ge(x, I(0)), +(Log'(x), I(0)), 0)
MAX(N(x, l, r)) → MAX(r)
LOG'(I(x)) → LOG'(x)
MIN(N(x, l, r)) → MIN(l)
+1(O(x), O(y)) → +1(x, y)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
GE(0, O(x)) → GE(0, x)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
GE(0, O(x)) → GE(0, x)
[GE2, 0]
O1: [1]
0: multiset
GE2: [2,1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
GE(I(x), I(y)) → GE(x, y)
GE(I(x), O(y)) → GE(x, y)
GE(O(x), I(y)) → GE(y, x)
GE(O(x), O(y)) → GE(x, y)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
-1(I(x), I(y)) → -1(x, y)
-1(I(x), O(y)) → -1(x, y)
-1(O(x), I(y)) → -1(x, y)
-1(O(x), O(y)) → -1(x, y)
-1(O(x), I(y)) → -1(-(x, y), I(1))
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-1(I(x), I(y)) → -1(x, y)
-1(I(x), O(y)) → -1(x, y)
-1(O(x), I(y)) → -1(x, y)
-1(O(x), O(y)) → -1(x, y)
-1(O(x), I(y)) → -1(-(x, y), I(1))
[I1, O1] > -^11 > 0
1 > 0
I1: [1]
-^11: [1]
O1: [1]
1: multiset
0: multiset
-(I(x), I(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(x, 0) → x
-(O(x), O(y)) → O(-(x, y))
O(0) → 0
-(I(x), O(y)) → I(-(x, y))
-(0, x) → 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
+1(I(x), O(y)) → +1(x, y)
+1(O(x), I(y)) → +1(x, y)
+1(I(x), I(y)) → +1(+(x, y), I(0))
+1(x, +(y, z)) → +1(x, y)
+1(I(x), I(y)) → +1(x, y)
+1(O(x), O(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(O(x), I(y)) → +1(x, y)
+1(x, +(y, z)) → +1(x, y)
+1(I(x), I(y)) → +1(x, y)
+1(x, +(y, z)) → +1(+(x, y), z)
Used ordering: Combined order from the following AFS and order.
+1(I(x), O(y)) → +1(x, y)
+1(I(x), I(y)) → +1(+(x, y), I(0))
+1(O(x), O(y)) → +1(x, y)
+^11 > I1 > +2 > 0
I1: [1]
+^11: [1]
+2: [1,2]
0: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
+1(I(x), O(y)) → +1(x, y)
+1(I(x), I(y)) → +1(+(x, y), I(0))
+1(O(x), O(y)) → +1(x, y)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
+1(I(x), I(y)) → +1(+(x, y), I(0))
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
+1(I(x), O(y)) → +1(x, y)
+1(O(x), O(y)) → +1(x, y)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(I(x), O(y)) → +1(x, y)
Used ordering: Combined order from the following AFS and order.
+1(O(x), O(y)) → +1(x, y)
[+^12, I1]
I1: [1]
+^12: [2,1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
+1(O(x), O(y)) → +1(x, y)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+1(O(x), O(y)) → +1(x, y)
O1 > +^11
+^11: [1]
O1: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
LOG'(O(x)) → LOG'(x)
LOG'(I(x)) → LOG'(x)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LOG'(O(x)) → LOG'(x)
Used ordering: Combined order from the following AFS and order.
LOG'(I(x)) → LOG'(x)
[LOG'1, O1]
O1: [1]
LOG'1: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
LOG'(I(x)) → LOG'(x)
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LOG'(I(x)) → LOG'(x)
I1 > LOG'1
I1: [1]
LOG'1: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
+(x, +(y, z)) → +(+(x, y), z)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
not(true) → false
not(false) → true
and(x, true) → x
and(x, false) → false
if(true, x, y) → x
if(false, x, y) → y
ge(O(x), O(y)) → ge(x, y)
ge(O(x), I(y)) → not(ge(y, x))
ge(I(x), O(y)) → ge(x, y)
ge(I(x), I(y)) → ge(x, y)
ge(x, 0) → true
ge(0, O(x)) → ge(0, x)
ge(0, I(x)) → false
Log'(0) → 0
Log'(I(x)) → +(Log'(x), I(0))
Log'(O(x)) → if(ge(x, I(0)), +(Log'(x), I(0)), 0)
Log(x) → -(Log'(x), I(0))
Val(L(x)) → x
Val(N(x, l, r)) → x
Min(L(x)) → x
Min(N(x, l, r)) → Min(l)
Max(L(x)) → x
Max(N(x, l, r)) → Max(r)
BS(L(x)) → true
BS(N(x, l, r)) → and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r)))
Size(L(x)) → I(0)
Size(N(x, l, r)) → +(+(Size(l), Size(r)), I(1))
WB(L(x)) → true
WB(N(x, l, r)) → and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r)))